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Orthogonal Pure States in Operator Theory
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We summarize and deepen existing results on systems of orthogonal pure states in
the context of Jordan–Banach (JB) algebras and C∗-algebras. Especially, we focus on
noncommutative generalizations of some principles of topology of locally compact
spaces such as exposing points by continuous functions, separating sets by continuous
functions, and multiplicativity of pure states.
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1. INTRODUCTION AND PRELIMINARIES

The aim of this paper is to summarize and deepen recent results on the systems
of orthogonal pure states in operator theory and comment on their relations to
axiomatic foundations of quantum mechanics. There are two main motivations
for our study of pure states and their orthogonal systems. At first, in the standard
axiomatics of quantum mechanics pure states of a physical system are identified
with the rays in a separable Hilbert space. In this approach orthogonal pure states,
embodying mutually exclusive states of the system, correspond to orthogonal
one-dimensional subspaces. For this reason, the systems of pure states have been
studied in connection with fundamental questions of quantum mechanics such
as hidden variables problem, description of independence of quantum system,
etc. Secondly, from the mathematical standpoint, pure states encode much of the
structure of operator algebras. Any commutative C∗-algebra A may be identified
with the algebra of complex continuous functions on a locally compact space X,
while pure states correspond to points of X. There are many important principles
on separating points and sets in topology of locally compact spaces, as for example
the Uryshon Lemma and others. The objective of this note is to overview possible
extensions of various principles of this kind to the realm of the C∗-algebras and
the Jordan–Banach (JB) algebras.
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As the starting point we recall basic properties of commutative operator
algebras. Any commutative C∗-algebra is isomorphic to the algebra C0(X) of all
continuous complex functions on a locally compact Hausdorff space X vanishing
at infinity. Associative JB algebras are nothing but algebras of all real functions
from C0(X). At this level there is no substantial difference between the Jordan
algebras and the C∗-algebras. One of the classical results of Banach function
algebras says that a state � on C0(X) is pure if and only if it is multiplicative,
i.e., precisely when �(fg) = �(f ) �(g) for all f, g ∈ C0(X). Moreover, there is
a one-to-one correspondence between the pure states and the points of X in the
sense that every pure state � is of the form �(f ) = f (x), (f ∈ C0(X)), where
x ∈ X. These results are far from being true in the noncommutative case. In fact,
all pure states on a C∗-algebra are multiplicative exactly when this algebra is
commutative. However, we shall establish that even in the noncommutative case
pure states are multiplicative on large parts of operator algebras.

Another fact concerning exposing point by a continuous function will be
dealt with in more general noncommutative setting. If the compact space X is
metrizable, then any point x ∈ X can be exposed by a continuous function f on X

with values in [0, 1], meaning that x is the only point such that f (x) = 1. Among
others we will show that this principle remains valid for separable algebras.

Finally, working in locally compact space X, it is easy to verify that given
a sequence (xn) discrete as a subspace of X, we can always find a sequence (fn)
of continuous function on X, 0 ≤ fn ≤ 1, having pairwise disjoint supports and
satisfying fn(xm) = δnm. In other words, points can be separated by functions.
We will investigate to what extend can this fact be extended to nonassociative
generalization of compact Hausdorff spaces given by JB algebras.

What makes the problems outlined earlier interesting and difficult is the fact
that “points” and “sets” cannot be localized in one space. Namely, in general
operator setting points correspond to elements of the dual spaces while open sets
correspond to special projections in the double duals.

Let us now recall basic notions and fix the notation. Our basic structure
will be JB algebra. A JB algebra is a real Banach algebra (A, ◦) such that for
all a, b ∈ A, (i) a ◦ b = b ◦ a, (ii) (a ◦ b) ◦ a2 = a ◦ (b ◦ a2), (iii) ||a2|| = ||a||2,
(iv) ||a2 + b2|| ≥ ||a||2. For all unmentioned details on operator algebras we refer
to monographs (Davidson, 1996; Hanche-Olsen and Stormer, 1984; Kadison and
Ringrose, 1983; Pedersen, 1979; Takesaki, 1968). In what follows A will stand for
a JB algebra and B(H ) for the algebra of all bounded operators acting on a Hilbert
space H . An important example of a JB algebra is the algebra of all self-adjoint
operators of a C∗-algebra A endowed with the product a ◦ b = 1/2(ab + ba). A
state on a JB algebra A is a norm one functional � on A such that �(a2) ≥ 0
for all a ∈ A. The pure state is an extreme point of the convex set of all states.
Two canonical examples of pure states will be important for us. At first, the Dirac
measures δx , x ∈ X, defined on the function algebra CR

0 (X) of all real continuous
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functions on a locally compact space X vanishing at infinity by δx(f ) = f (x),
(f ∈ C0(X)) are the only pure states on CR

0 (X). Secondly, the vector state on the
self-adjoint part of a C∗-algebra A acting on a Hilbert space H associated with a
unit vector ξ ∈ H by the formula ωξ (a) = (aξ, ξ ) (a ∈ A) is a pure state that can
be considered as the noncommutative version of the Dirac measure. Pure states �1
and �2 on A are called orthogonal if they have the maximal possible distance, i.e.,
if ‖�1 − �2‖ = 2. The vector states on the algebra of all self-adjoint operators on
a given Hilbert space are orthogonal exactly when the corresponding vectors are
orthogonal. In case of associative algebras all distinct pure states are orthogonal.
It is a key property of the quantum model that there are distinct but not orthogonal
pure states (see Bohr’s concept of complementarity).

2. INDIVIDUAL PURE STATE

The problem of exposing point of a compact space by a continuous function
has given impetus to the following definition. An element a ∈ A, ||a|| ≤ 1, a ≥ 0,

is determining for a pure state � on A if �(a) = 1 and ϕ(a) < 1 for any pure state
ϕ on A different from �. In the physical terminology, the state � admits the
determining element if and only if there is some observable O with values in
[0,1] such that the system is in the state � precisely when we obtain value 1
when measuring O. As an example, an atomic projection of a Hilbert space H

onto one-dimensional subspace spanned by the unit vector ξ ∈ H is a determining
element for the vector state ωξ on the algebra of all self-adjoint operators on a
Hilbert space H . This is a typical situation in the standard formalism of quantum
mechanics. The following proposition describes states admitting determining
elements.

Proposition 2.1. (Hamhalter, 2001) If A is a unital algebra then a pure state � on
A admits a determining element if and only if its left ideal L� = {�(x2) = 0 | x ∈
A} has a countable approximate unit. Especially, any pure state on a separable JB
algebra has a determining element.

The proof is based on the analysis of approximate units and pure states.
This result is far from being true for nonseparable algebra. Indeed, in contrast
to Proposition 2.1, only normal pure states on JBW algebras qualify for having
determining elements. Let us recall that a JB algebra is called a JBW algebra if
it is a dual Banach space. A state on JBW algebra is called normal if it can be
identified with element from the predual.

Theorem 2.1. (Hamhalter, 2001) A pure state � on a JBW algebra M has
a determining element if and only if � is normal. Especially, if M is a von



842 Hamhalter

Neumann algebra then � has a determining element if and only if it is a vector
state concentrated on a direct summand isomorphic to B(H ).

The previous theorem says that the states described by the rays in a Hilbert
space H are the only pure states on von Neumann algebras having determining
elements. This advocates basic assumptions in early models of quantum
mechanics.

3. ORTHOGONAL PURE STATES AND SUPPORTING SYSTEMS

In this section we shall deal with a more complicated case of a system of
orthogonal pure states. Suppose that (�n) is a sequence of (pairwise) orthogonal
pure states on A. A sequence (bn) in A with 0 ≤ bn ≤ 1, and bn ◦ bm = 0 whenever
n �= m is called supporting for (�n) if

�n(bm) = δmn, for all n,m.

If, in addition, each bn is determining for �n, we call (bn) a determining supporting
sequence. In example of associative algebra in the introduction we have seen that a
sequence of orthogonal pure states has a supporting sequence if the corresponding
points can be separated by open sets. In order to find an analogy of this result for
nonassociative algebras we shall need the following concepts. Let A be canoni-
cally embedded into its second dual A∗∗. It is known that A∗∗ is a JBW algebra
extending the product in A. A projection p in A∗∗ is called open if there is an
increasing net of elements (aλ) in A with aλ ↗ p. A projection p in A∗∗ is closed
if 1 − p is open. Any state � on A canonically extends to a normal state on A∗∗.
Hence, there is a smallest projection s(�) in A∗∗ such that �(s(�)) = 1. We call s(�)
the support projection of �. It is known that s(�) is always minimal and closed if
� is pure. It was proved by Hamhalter (1999) that a system (�α) of orthogonal pure
states admits a supporting system if and only if there is a system (pα) of open,
pairwise orthogonal projections in A∗∗, such that s(�α) ≤ pα for each α. This is a
precise analogy of the classical case. Our main result gives sufficient conditions
for the existence of supporting system in terms of primitive ideal space. Let P (A)
be the set of all pure states on A equipped with the weak∗-topology. Let c(�) be the
central cover of �, i.e., the smallest central projection in A∗∗ majorizing the support
projection s(�). We define a homomorphism π� : A → A∗∗ by π�(x) = c(�) ◦ x,
x ∈ A. In case of C∗-algebras π� corresponds to the G.N.S. representation of �.
The primitive ideal space is now defined as the set of all kernels of the represen-
tations, Prim(A) = {Ker π� | � ∈ P (A)}. The primitive ideal space is endowed
with the Jacobson topology whose closure operation is S ⊂ Prim(A) → S =
{F ∈ Prim(A) | F ⊃ ∩S}. The canonical map τ now sends pure state � to its
kernel Ker�. A set P in the pure state space P (A) is called almost separated if
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its image τ (P ) in Prim(A) can be covered by disjoint open sets (Uα) such that
each open set τ−1(Uα) contains finitely many elements. The following result says
that any almost separated sequence of orthogonal pure states admits a supporting
sequence.

Theorem 3.1. (Hamhalter, 1999) Any sequence (�n) of almost separated or-
thogonal pure states on a JB algebra A has a supporting sequence. This sequence
can be chosen determining if A is separable.

By combining the Hahn–Banach and the Krein–Milman theorems we can de-
rive the following consequences of the previous results for the restriction properties
of states. By Theorem 3.1 any finite sequence �1, �2, . . . , �n of orthogonal pure
states on a separable algebra A has a determining sequence b1, b2, . . . , bn. The
algebra C generated by b1, b2, . . . , bn is associative and all states �1, �2, . . . , �n

restrict simultaneously to pure states on C and are uniquely given by these restric-
tions. If n = 2 then the algebra C can even be specified to be singly generated. From
the physical point of view, two mutually exclusive states of the system are given
by the structure of just one observable. Since any associative subalgebra can be ex-
tended to maximal one, we infer that any sequence (�n) of almost separated states
on a separable algebra admit a determining maximal associative subalgebra in the
sense that each pure state �n is uniquely determined by its restriction to this algebra.

The situation concerning infinitely many orthogonal pure states is discussed
in the following theorem. Following Akemann et al. (1986) we say that a sequence
(�n) of pure states on a JB algebra A approaches to infinity if limn→∞ �n(a) = 0
for every a ∈ A such that the spectrum of a contains zero. For example, if A is
the real part of the algebra of all continuous functions on the real line vanishing
at infinity, then (δxn

) approaches to infinity if and only if |xn| → ∞.

Theorem 3.2. Let A be a separable JB algebra and (�n) be a sequence of orthog-
onal pure states approaching to infinity. The following statements are equivalent:

(i) (�n) has a supporting system.
(ii) (�n) has a determining supporting system.

(iii) There exists a maximal associative subalgebra C of A determining
for (�n).

(iv) There exists a maximal associative subalgebra C of A such that (�n|C)
forms an orthogonal sequence of pure states.

Proof: The equivalence of (i) and (ii) is the content of (Hamhalter, 1999, Propo-
sition 3.1).

(ii)⇒(iii) Suppose that (bn) is a supporting determining sequence for (�n).
The algebra C ′ generated by bn’s is associative. Let C be any maximal associative
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subalgebra extending C ′. Any state �n|C ′ is pure and extends uniquely to a pure
state on A. Hence, state �n|C ′ has a unique extension to a state �n|C which has
to be, by the Krein–Milman theorem, a pure state. Hence, each �n is uniquely
determined by its pure restriction to C.

(iii)⇒ (iv) Let C be an associative subalgebra fulfilling (iii). Since �n’s have
to be distinct on C we have ‖(�n − �m)|C‖ = 2 because C is associative.

(iv)⇒ (i) Applying Theorem 3.1 to a separable subalgebra C we get a desired
supporting sequence for (�n). The proof is completed.

These extension results contribute to the line of research in works (Akemann,
1970; Akemann et al., 1989; Anderson, 1979a; Barnes, 1972; Bunce, 1970).

4. MULTIPICATIVITY OF ORTHOGONAL PURE STATES

As we have seen the pure state on an operator algebra is seldom multiplicative.
On the other hand, it can be uniquely determined by multiplicative state on some
maximal associative subalgebra provided that the algebra is separable. As it was
shown by Akemann (1970) this does not hold for nonseparable algebras. However,
we can still ask whether there exists some maximal associative subalgebra such that
given pure state is multiplicative on it. The following problem, that is central for
this section, seems to be a natural operator-theoretic extension of the equivalence
between pureness and multiplicativity for states on function algebras.

Problem. 4.1. Is a given sequence of orthogonal pure states on a JB algebra
(resp. C∗-algebra) pure (i.e., multiplicative) on some maximal associative (resp.
abelian) subalgebra?

There are many partial positive results along this line. E. Stormer char-
acterized pure states in terms of definite subsets (Stormer, 1968). Aarnes and
Kadison answered the problem in the positive for a pure state on a separable
unital C∗-algebra (Aaarnes and Kadison, 1969). Then Akemann extended their
result to finitely many states on a separable (not necessarily) unital C∗-algebra
(Akemann, 1970). It was Barnes who realized that what is important is the
separability of the G.N.S. representation of a given state. He established the
positive answer for individual pure state with separable representation (Barnes,
1972). Also he gave, independently of Bunce (1970), positive answer for pure
states on Type I C∗-algebras (Barnes, 1972). The topic was then revived by
Akemann, Anderson and Pedersen in the paper (Akemann et al., 1989) deal-
ing with states approaching to infinity. They have proved that pure orthogonal
sequence of nearly inequivalent states on C∗-algebra approaching to infinity re-
strict simultaneously to multiplicative states on some maximal abelian subalge-
bra. Unfortunately, they needed additional assumption on accumulation points of
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this sequence. Despite these positive results we have proved that the answer to
Problem 4.1 is in the negative. Moreover, it turns out that the counterexample is
quite generic.

Counterexample. 4.2. (Hamhalter, 2002) Let A be a separable unital infinitely
dimensional C∗-algebra acting irreducibly on a Hilbert space H . Let K be the
algebra of all compact operators acting on H . Suppose that A/A ∩ K is noncom-
mutative. Then there exists a sequence of orthogonal pure states onA that do not re-
strict (simultaneously) to pure states on any maximal commutative C∗-subalgebra
of A.

Proof: The irreducible algebraA either contains all compact operators orA ∩ K =
{0}. The proof of both cases is given in (Hamhalter, 2002). Here we present a
simpler version of arguments concerning the case when A ∩ K = {0}. Since H is
separable we can find a dense sequence (xn) in its unit sphere. It means that the
convex hull of the sequence (ωxn

) of the corresponding vector states is weak∗-dense
in the state space of A (see, e.g., (Kadison and Ringrose, 1983)). Set

f =
∑

n

1

2n
ωxn

.

By the improved Glimm’s lemma (Akemann et al., 1989; Glimm, 1960) there is
an orthonormal basis (ξn) of H such that

f (a) = lim
n→∞(aξn, ξn) .

By taking the corresponding pure states (ωξn
) we obtain a sequence of pure or-

thogonal states on A (A is irreducible). Suppose that C is a maximal abelian
subalgebra such that all states (ωξn

) are multiplicative on C. Then, obviously, f is
also multiplicative on C. In other words f is pure on C and so f = ωξn

for all n on
C. By the density of the convex hull of ωxn

, we see that all states on C are multiples
of f . By the spectral theory C has to be one-dimensional and so dimA = 1—a
contradiction with irreducibility of A on an infinite-dimensional H .

The case when A contains the ideal of compact operators is based on the
Weyl–von Neumann theorem and may be found in (Hamhalter, 2002).

This counterexample has interesting consequence for the Calcin algebra,
i.e., for the quotient of B(H ) by the ideal of compact operators K . Namely, we
can construct a separable subalgebra of the Calcin algebra having a sequence of
orthogonal pure states that are not simultaneously multiplicative on any maxi-
mal commutative C∗-algebra. In contrast to this, Anderson proved in (Anderson,
1979b) that for any sequence of states on the Calcin algebra there is a maximal
associative subalgebra such that all members of this sequence are multiplicative
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on it. This indicates that the interplay between the size of C∗-algebra and the size
of its maximal abelian subalgebras is quite delicate.

Counterexample 4.2 indicates possible limitations to improvements of posi-
tive results. We have to put some additional conditions on the system of orthogonal
pure states as it is shown in the following theorem.

Theorem 4.3. (Hamhalter, 2002) Let (�n) be a sequence of orthogonal pure
states on a JB algebra A approaching to infinity and such that c(�n)A∗∗ is σ -finite
for all n. Suppose further that

∑∞
n=m s(�n) is a closed projection for all m. Then

there is a maximal associative subalgebra B of A such that all states (�n) restrict
to pure states on B.

In particular, for a finite system of orthogonal pure states on A with σ -finite
central covers there is always a maximal associative subalgebra such that all states
are pure on it.

This result is sharper than existing results even in case of C∗-algebras
(Aaarnes and Kadison, 1969; Akemann, 1970; Akemann et al., 1986,
1989; Anderson, 1979a; Barnes, 1972; Bunce1970). However, the main difficulty
lies in the Jordan case when we have to develop new methods to overcame the
lack of Hilbert space representations which are ubiquitous in C∗-case.

Summing it up, the question on multiplicativity of an infinite sequence of
orthogonal pure states is more or less solved. Nevertheless, the following well-
known question is still open: Does every pure state on a JB algebra restrict to a
pure state on some maximal associative subalgebra?

The results on the determining elements and multiplicativity of orthogonal
pure states have been applied to studying the structure of the compact JB algebras
(Hamhalter, 1999) and can also be of some interest for the pure extension property
studied, e.g., in (Bunce1 and Chu, 1998).
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